Two Moments Suffice for Poisson Approximations: the Chen-stein Method
نویسندگان
چکیده
Convergence to the Poisson distribution, for the number of occurrences of dependent events, can often be established by computing only first and second moments, but not higher ones. This remarkable result is due to Chen (1975). The method also provides an upper bound on the total variation distance to the Poisson distribution, and succeeds in cases where third and higher moments blow up. This paper presents Chen's results in a form that is easy to use and gives a multivariable extension, which gives an upper bound on the total variation distance between a sequence of dependent indicator functions and a Poisson process with the same intensity. A corollary of this is an upper bound on the total variation distance between a sequence of dependent indicator variables and the process having the same marginals but independent coordinates.
منابع مشابه
On Using the First Difference in Stein - Chen Method
This paper investigates an alternative way of using the Stein-Chen method in Poisson approximations. There are three principal bounds stated in terms of reduced Palm probabilities for general point processes. The rst two are for the accuracy of Poisson random variable approximation to the distribution of the number of points in a point process with respect to the total variation metric and Wass...
متن کاملPoisson Approximation and the Chen-Stein Method
The Chen-Stein method of Poisson approximation is a powerful tool for computing an error bound when approximating probabilities using the Poisson distribution. In many cases, this bound may be given in terms of first and second moments alone. We present a background of the method and state some fundamental Poisson approximation theorems. The body of this paper is an illustration, through varied...
متن کاملCoupling and Poisson Approximation
We give an overview of the Stein{Chen method for establishing Poisson approximations of various random variables. Couplings of certain variables are used to gives explicit bounds for the total variation distance between the distribution of a random variable and a Poisson variable. Some applications are given. In some cases, explicit couplings may be used to obtain good estimates; in other appli...
متن کاملTwo sufficient conditions for Poisson approximations in the ferromagnetic Ising model
A d-dimensional ferromagnetic Ising model on a lattice torus is considered. As the size of the lattice tends to infinity, two conditions ensuring a Poisson approximation for the distribution of the number of occurrences in the lattice of any given local configuration are suggested. The proof builds on the Stein-Chen method. The rate of the Poisson approximation and the speed of convergence to i...
متن کاملA Probabilistic Proof of Stein's factors
We provide a probabilistic proof of the Stein's factors based on properties of birth and death Markov chains, solving a tantalising puzzle in using Markov chain knowledge to view the celebrated Stein-Chen method for Poisson approximations. This paper complements the work of Barbour (1988) for the case of Poisson random variable approximation. The Stein-Chen method was introduced in Chen (1975) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989